Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PeerJ ; 11: e16111, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37790616

RESUMEN

Background: Sustainable management requires spatial mapping of both species distribution and human activities to identify potential risk of conflict. The common bottlenose dolphin (Tursiops truncatus) is a priority species of the European Union Habitat Directive, thus, to promote its conservation, the understanding of habitat use and distribution, as well as the identification and spatial trend of the human activities which may directly affect populations traits, is pivotal. Methods: A MaxEnt modeling approach was applied to predict the seasonal (from April to September) habitat use of a small population of bottlenose dolphins in the north-western Sardinia (Mediterranean Sea) in relation to environmental variables and the likelihoods of boat and fishing net presence. Then, the overlapping areas between dolphin, fishing net and boat presence were identified to provide insights for the marine spatial management of this area. Results: Three of the main factors influencing the seasonal distribution of bottlenose dolphins in the area are directly (boating and fishing) or indirectly (ocean warming) related to human activities. Furthermore, almost half of the most suitable area for dolphins overlapped with areas used by fishing and boating. Finally, relying on fishing distribution models, we also shed light on the potential impact of fishing on the Posidonia oceanica beds, a protected habitat, which received higher fishing efforts than other habitat types. Discussion: Modelling the spatial patterns of anthropogenic activities was fundamental to understand the ecological impacts both on cetacean habitat use and protected habitats. A greater research effort is suggested to detect potential changes in dolphin habitat suitability, also in relation to ocean warming, to assess dolphin bycatch and the status of target fish species, and to evaluate sensitive habitats conditions, such as the Posidonia oceanica meadow.


Asunto(s)
Delfín Mular , Animales , Humanos , Explotaciones Pesqueras , Conservación de los Recursos Naturales , Actividades Humanas , Unión Europea
2.
Sci Rep ; 13(1): 10000, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37340008

RESUMEN

Global warming is expected to have inexorable and profound effects on marine ecosystems, particularly in foundation species such as seagrasses. Identifying responses to warming and comparing populations across natural temperature gradients can inform how future warming will impact the structure and function of ecosystems. Here, we investigated how thermal environment, intra-shoot and spatial variability modulate biochemical responses of the Mediterranean seagrass Posidonia oceanica. Through a space-for-time substitution study, Fatty acid (FA) profiles on the second and fifth leaf of the shoots were quantified at eight sites in Sardinia along a natural sea surface temperature (SST) summer gradient (about 4 °C). Higher mean SST were related to a decrease in the leaf total fatty acid content (LTFA), a reduction in polyunsaturated fatty acids (PUFA), omega-3/omega-6 PUFA and PUFA/saturated fatty acids (SFA) ratios and an increase in SFA, monounsaturated fatty acids and carbon elongation index (CEI, C18:2 n-6/C16:2 n-6) ratio. Results also revealed that FA profiles were strongly influenced by leaf age, independently of SST and spatial variability within sites. Overall, this study evidenced that the sensitive response of P. oceanica FA profiles to intra-shoot and spatial variability must not be overlooked when considering their response to temperature changes.


Asunto(s)
Alismatales , Ácidos Grasos Omega-3 , Ácidos Grasos , Ecosistema , Ácidos Grasos Insaturados , Estaciones del Año , Calentamiento Global , Alismatales/fisiología
3.
Mar Environ Res ; 184: 105854, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36577310

RESUMEN

Primary producers nutritional content affects the entire food web. Here, changes in nutritional value associated with temperature rise and the occurrence of marine heat waves (MHWs) were explored in the endemic Mediterranean seagrass Posidonia oceanica. The variability of fatty acids (FAs) composition and carbon (C) and nitrogen (N) content were examined during summer 2021 from five Mediterranean sites located at the same latitude but under different thermal environments. The results highlighted a decrease in unsaturated FAs and C/N ratio and an increase of monounsaturated FA (MUFA) and N content when a MHW occurred. By contrast, the leaf biochemical composition seems to be adapted to local water temperature since only few significant changes in MUFA were found and N and C/N had an opposite pattern compared to when a MHW occurs. The projected increase in temperature and frequency of MHW suggest future changes in the nutritional value and palatability of leaves.


Asunto(s)
Alismatales , Calor , Temperatura , Ecosistema , Valor Nutritivo , Mar Mediterráneo
4.
Sci Rep ; 12(1): 6980, 2022 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-35618794

RESUMEN

One of the most studied aspects of animal communication is the acoustic repertoire difference between populations of the same species. While numerous studies have investigated the variability of bottlenose dolphin whistles between populations, very few studies have focused on the signature whistles alone and the factors underlying differentiation of signature whistles are still poorly understood. Here we describe the signature whistles produced by six distinct geographical units of the common bottlenose dolphin (Tursiops truncatus) in the Mediterranean Sea and identify the main determinants of their variability. Particularly, the influence of the region (proxy of genetic distance), the geographic site, and the environmental (sea bottom-related) and demographical (population-related) conditions on the acoustic structure of signature whistles was evaluated. The study provides the first evidence that the genetic structure, which distinguishes the eastern and western Mediterranean bottlenose dolphin populations has no strong influence on the acoustic structure of their signature whistles, and that the geographical isolation between populations only partially affected whistle variability. The environmental conditions of the areas where the whistles developed and the demographic characteristics of the belonging populations strongly influenced signature whistles, in accordance with the "acoustic adaptation hypothesis" and the theory of signature whistle determination mediated by learning.


Asunto(s)
Delfín Mular , Acústica , Comunicación Animal , Animales , Delfín Mular/genética , Aprendizaje , Vocalización Animal
5.
Sci Rep ; 11(1): 18107, 2021 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-34518602

RESUMEN

Comparing populations across temperature gradients can inform how global warming will impact the structure and function of ecosystems. Shoot density, morphometry and productivity of the seagrass Posidonia oceanica to temperature variation was quantified at eight locations in Sardinia (western Mediterranean Sea) along a natural sea surface temperature (SST) gradient. The locations are spanned for a narrow range of latitude (1.5°), allowing the minimization of the effect of eventual photoperiod variability. Mean SST predicted P. oceanica meadow structure, with increased temperature correlated with higher shoot density, but lower leaf and rhizome width, and rhizome biomass. Chlorophyll a (Chl-a) strongly impacted seagrass traits independent of SST. Disentangling the effects of SST and Chl-a on seagrass meadow shoot density revealed that they work independently, but in the same direction with potential synergism. Space-for-time substitution predicts that global warming will trigger denser seagrass meadows with slender shoots, fewer leaves, and strongly impact seagrass ecosystem. Future investigations should evaluate if global warming will erode the ecosystem services provided by seagrass meadows.

6.
PeerJ ; 9: e10960, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33717695

RESUMEN

In a wide variety of habitats, including some heavily urbanised areas, the adaptability of populations of common bottlenose dolphin (Tursiops truncatus) may depend on the social structure dynamics. Nonetheless, the way in which these adaptations take place is still poorly understood. In the present study we applied photo-identification techniques to investigate the social structure of the common bottlenose dolphin population inhabiting the Gulf of Alghero (Sardinia, Italy), analysing data recorded from 2008 to 2019. The social structure analysis showed a division of the entire population into five different communities and the presence of non-random associations, while there was no evidence of segregation between sexes. Furthermore, results highlighted an important change in social structure through time, likely due to a reduction in fish farm activity since 2015. The division of the population into different communities, the presence of segregation based on the foraging strategy (inside or outside the fish farm area) and the social network measures were evaluated by analysing independently the two datasets: the intense and low farm activity periods: 2008-2014 and 2015-2020, respectively. Segregation among individuals belonging to the same foraging strategy class was found only in the earlier period, and the composition of the four communities was consistent with this result. Our study improves the knowledge about bottlenose dolphin adaptation, as a lower complexity in social structure was linked to a reduction in anthropogenic food availability.

7.
PeerJ ; 9: e12551, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35003918

RESUMEN

BACKGROUND: Marine soundscape is the aggregation of sound sources known as geophony, biophony, and anthrophony. The soundscape analysis, in terms of collection and analysis of acoustic signals, has been proposed as a tool to evaluate the specific features of ecological assemblages and to estimate their acoustic variability over space and time. This study aimed to characterise the Capo Caccia-Isola Piana Marine Protected Area (Italy, Western Mediterranean Sea) soundscape over short temporal (few days) and spatial scales (few km) and to quantify the main anthropogenic and biological components, with a focus on fish biophonies. METHODS: Within the MPA, three sites were chosen each in a different protection zone (A for the integral protection, B as the partial protection, and C as the general protection). In each site, two underwater autonomous acoustic recorders were deployed in July 2020 at a depth of about 10 m on rocky bottoms. To characterise the contribution of both biophonies and anthrophonies, sea ambient noise (SAN) levels were measured as sound pressure level (SPL dB re: 1 µ Pa-rms) at eight 1/3 octave bands, centred from 125 Hz to 16 kHz, and biological and anthropogenic sounds were noted. Fish sounds were classified and counted following a catalogue of known fish sounds from the Mediterranean Sea based on the acoustic characteristic of sound types. A contemporary fish visual census had been carried out at the test sites. RESULTS: SPL were different by site, time (day vs. night), and hour. SPLs bands centred at 125, 250, and 500 Hz were significantly higher in the daytime, due to the high number of boats per minute whose noise dominated the soundscapes. The loudest man-made noise was found in the A zone, followed by the B and the C zone, confirming that MPA current regulations do not provide protection from acoustic pollution. The dominant biological components of the MPA soundscape were the impulsive sounds generated by some invertebrates, snapping shrimps and fish. The vast majority of fish sounds were recorded at the MPA site characterized by the highest sound richness, abundance, and Shannon-Wiener index, coherently with the results of a fish visual census. Moreover, the acoustic monitoring detected a sound associated with a cryptic species (Ophidion spp.) never reported in the study area before, further demonstrating the usefulness of passive acoustic monitoring as a complementary technique to species census. This study provides baseline data to detect future changes of the marine soundscapes and some suggestions to reduce the impact of noise on marine biodiversity.

8.
Behav Processes ; 182: 104281, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33188844

RESUMEN

Sounds are particularly important for animals that live in complex social communities. In this study, we assessed the communication calls (whistles) that common bottlenose dolphins emit during their foraging activities in the absence and presence of motor boats and during dolphin depredation on trawlers, in Alghero (Sardinia, Italy) and Cres-Losinj Archipelago (Croatia). The latter behaviour involves foraging on concentrated food sources during very noisy human activity and may require the emission of distinctive whistles. Thus, we investigated if whistle structure, in terms of frequency and time parameters, changes depending on these three foraging contexts. In Sardinia, during foraging in interaction with trawlers, whistles differed from those emitted during the other foraging contexts. Conversely, in Cres-Losinj, significant variations in whistles were found to be related mainly to the presence of motor boats. This study represents the first report on how two dolphin populations adopt different acoustic tactics in the context of similar foraging behaviour. By investigating the effects of opportunistic foraging on acoustic repertoires, we provide new findings on the acoustic adaptation of dolphins to local conditions and contribute to understanding the relationships between dolphins and human activities, such as fishing and boat traffic.


Asunto(s)
Delfín Mular , Acústica , Animales , Humanos , Italia , Espectrografía del Sonido , Vocalización Animal
9.
Sci Rep ; 10(1): 17332, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-33060776

RESUMEN

Predicting community-level responses to seawater warming is a pressing goal of global change ecologists. How far such predictions can be derived from a fine gradient of thermal environments needs to be explored, even if ignoring water climatology does not allow estimating subtidal marine heat waves. In this study insights about the influence of the thermal environment on the coralligenous community structure were gained by considering sites (Sardinia, Italy) at different temperature conditions. Heating events were measured (by loggers at 18 m, 23 m, 28 m, 33 m and 38 m deep) and proxies for their duration (the maximum duration of events warmer than the 90th percentile temperature), intensity (the median temperature) and variability (the number of daily ΔT larger than the mean daily ΔT, and the number of heating events larger in ΔT than the 90th percentile ΔT) were selected by GAM models. Reliable predictions of decrease in coralligenous richness of taxa/morphological groups, with relevant increment in turfs and encrusting coralline algae abundance at the expenses of bryozoans were made. Associations to the different types of heating descriptor have highlighted the aspect (intensity, duration or variability) of the heating events and the threshold for each of them responsible for the trajectories of change.

10.
Ecol Evol ; 10(4): 1971-1987, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32128130

RESUMEN

The studies on the variation of acoustic communication in different species have provided insight that genetics, geographic isolation, and adaptation to ecological and social conditions play important roles in the variability of acoustic signals. The dolphin whistles are communication signals that can vary significantly among and within populations. Although it is known that they are influenced by different environmental and social variables, the factors influencing the variation between populations have received scant attention. In the present study, we investigated the factors associated with the acoustic variability in the whistles of common bottlenose dolphin (Tursiops truncatus), inhabiting two Mediterranean areas (Sardinia and Croatia). We explored which factors, among (a) geographical isolation of populations, (b) different environments in terms of noise and boat presence, and (c) social factors (including group size, behavior, and presence of calves), were associated with whistle characteristics. We first applied a principal component analysis to reduce the number of collinear whistle frequency and temporal characteristics and then generalized linear mixed models on the first two principal components. The study revealed that both geographic distance/isolation and local environment are associated with whistle variations between localities. The prominent differences in the acoustic environments between the two areas, which contributed to the acoustic variability in the first principal component (PC1), were found. The calf's presence and foraging and social behavior were also found to be associated with dolphin whistle variation. The second principal component (PC2) was associated only with locality and group size, showing that longer and more complex tonal sound may facilitate individual recognition and cohesion in social groups. Thus, both social and behavioral context influenced significantly the structure of whistles, and they should be considered when investigating acoustic variability among distant dolphin populations to avoid confounding factors.

11.
Oecologia ; 186(4): 1137-1152, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29357032

RESUMEN

Seagrasses are globally declining and often their loss is due to synergies among stressors. We investigated the interactive effects of eutrophication and burial on the Mediterranean seagrass, Posidonia oceanica. A field experiment was conducted to estimate whether shoot survival depends on the interactive effects of three levels of intensity of both stressors and to identify early changes in plants (i.e., morphological, physiological and biochemical, and expression of stress-related genes) that may serve to detect signals of imminent shoot density collapse. Sediment burial and nutrient enrichment produced interactive effects on P. oceanica shoot survival, as high nutrient levels had the potential to accelerate the regression of the seagrass exposed to high burial (HB). After 11 weeks, HB in combination with either high or medium nutrient enrichment caused a shoot loss of about 60%. Changes in morphology were poor predictors of the seagrass decline. Likewise, few biochemical variables were associated with P. oceanica survival (the phenolics, ORAC and leaf δ34S). In contrast, the expression of target genes had the highest correlation with plant survival: photosynthetic genes (ATPa, psbD and psbA) were up-regulated in response to high burial, while carbon metabolism genes (CA-chl, PGK and GADPH) were down-regulated. Therefore, die-offs due to high sedimentation rate in eutrophic areas can only be anticipated by altered expression of stress-related genes that may warn the imminent seagrass collapse. Management of local stressors, such as nutrient pollution, may enhance seagrass resilience in the face of the intensification of extreme climate events, such as floods.


Asunto(s)
Alismatales , Carbono , Eutrofización , Fotosíntesis , Hojas de la Planta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...